
ORIGINAL PAPER

Neural networks for Nyquist plots prediction
during corrosion inhibition of a pipeline steel

D. Colorado-Garrido & D. M. Ortega-Toledo &

J. A. Hernández & J. G. González-Rodríguez &

J. Uruchurtu

Received: 19 August 2008 /Revised: 20 October 2008 /Accepted: 3 November 2008 /Published online: 4 December 2008
# Springer-Verlag 2008

Abstract This paper presents a predictive model for
electrochemical impedance Nyquist plots using artificial
neural network. The proposed model obtains predictions of
imaginary impedance based on the real part of the
impedance as a function of time. The model takes into
account the variations of the real impedance and immersion
time of steel in a corrosive environment, considering
constant carboxyamido-imidazoline corrosion inhibitor
concentrations (5 and 25 ppm). For the network, the
Levenberg–Marquardt learning algorithm, the hyperbolic
tangent sigmoid transfer function, and the linear transfer
function were used. The best-fitting training data set was
obtained with five neurons in the hidden layer for 5 ppm of
inhibitor and two neurons in the hidden layer for 25 ppm of
inhibitor, which made it possible to predict the efficiency
with accuracy at least as good as that of the theoretical
error, over the whole theoretical range. On the validation
data set, simulations and theoretical data test were in good
agreement with an R value of 0.984 for 5 ppm and 0.994
for 25 ppm of inhibitor. The developed model can be used
for the prediction of the real and imaginary parts of the
impedance as a function of time for short simulation times.
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Introduction

Corrosion is one of the main problems in the oil and gas
production and transportation industries. Oilfield corrosion
manifests itself in several forms, which include the “sweet
corrosion” generated by carbon dioxide (CO2) and/or the
“sour corrosion” generated by hydrogen sulfide (H2S), in
water injection systems. The most prevalent form of attack
found is produced by the presence of oxygen (O2) [1].
Inhibitors are currently used to protect against corrosion in
all petrochemical facilities in the world because it is cost-
effective and flexible. Nitrogen-based organic inhibitors,
such as imidazolines or their salts, have been successfully
used in these applications even without an understanding of
the inhibition mechanism [2].The corrosion inhibition by
organic compounds is related to their adsorption properties.
Adsorption depends on the nature and the state of the metal
surface (microstructure and chemical composition), on the
type of corrosive environment, and on the chemical
structure of the inhibitor [3]. According to [4], inhibitors
incorporate into the corrosion product layer and form a
protective barrier between the base metal and the corrosive
media. It is suggested that the structure of the inhibitor must
be appropriate to interact with the corrosion products and
that they can be effective on iron carbonates or sulfides, but
not effective on oxides. This work extends the study
presented in a previous work [5] with applications of neural
networks to electrochemical techniques. This model can be
used to predict different impedance Nyquist plots from
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different inhibitor concentrations (5 and 25 ppm) without
experimental variations in the time domain. Data evaluation
was carried out using the technique called electrochemical
impedance spectroscopy in an environment containing
NaCl and CO2 to simulate environments found in the
transport or crude oil industry. Neural network model was
developed and trained with experimental data from electro-
chemical impedance to know the performance of carboxy-
amido-imidazoline as corrosion inhibitor. The obtained
results using the neural network model was compared with
tested experimental data.

Electrochemical impedance spectroscopy is an electro-
chemical technique used in corrosion studies. This method
uses an alternating current (AC) that is applied over an
electrode to obtain the corresponding response. The imped-
ance describes the electric circuit response analogous to an
equivalent electrochemical interphase. In an electric circuit of
direct current, Ohm’s law defines the relation between current
(I) and potential (E) as:

E ¼ IR: ð1Þ

In the case of an alternating signal, the equation is:

E ¼ IZ: ð2Þ

In Eq. 2, Z represents the total impedance of an electric
circuit, in ohms. The AC impedance of an electric circuit
depends on the frequency of the applied signal. The
complex impedance Z(jw) can be represented with the
Nyquist plot and it is composed of a real (Zre, X-axis) part
and an imaginary part (Zim, Y-axis):

Z ¼ Zre þ Zim ¼ Rs þ Rct= 1þ j wCdlRctð Þ½ � ð3Þ

where w is the depression angle, Rs is the solution
resistance, and Rct and Cdl are the electrochemical double
layer or charge transfer resistance and capacitance, respec-
tively. Notice that, in this plot, the Y-axis is negative and
that each point on the Nyquist plot is the impedance at one
frequency. Figure 1 has been annotated to show that low-
frequency data are on the right side of the plot and higher
frequencies are on the left.

From the impedance plot in the Nyquist format, the
solution resistance can be obtained from the high-frequency
limit of Zre (Z), the addition of the solution and the
polarization resistances are equal to the low-frequency limit
of Zre, and the capacitance can be calculated from the
known frequency at the top of the Rp semicircle, as shown
in Fig. 1.

Materials and methods

Neural network systems

The neurons are grouped into distinct layers and inter-
connected according to a given architecture. As in nature,
the network’s function is determined largely by the
connections between elements (neurons). Each connection
between two neurons has a weight coefficient attached to it.
The standard network structure for an approximation
function is the multiple-layer perception (or feedforward
network). The feedforward network often has one or more
hidden layers of sigmoid neurons followed by an output
layer of linear neurons [6]. Multiple layers of neurons with
nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between input and output
vectors. The linear output layer lets the network produce
values outside the −1 to +1 range [7]. For the network, the
appropriate notation is used in two-layer networks [8]. A
simplified sketch of the network’s structure and behavior is
presented in Fig. 2 where k is the input variables number, ln
is the input variables, Out is the output variables, and the
thick lines are weights and biases. The number of neurons
in the input and output layers is given, respectively, by the
number of input and output variables in the process under
investigation.

The optimal number of neurons in the hidden layer(s) ns
is difficult to specify and depends on the type and
complexity of the process or experimentation. This number
is usually iteratively determined. Each neuron in the hidden

Fig. 1 Typical Nyquist plot
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layer has a bias b, which is added to the weighted inputs to
form the neuron input n (Eq. 3). This addition, n, is the
argument of the transfer function f:

n ¼ Wi 1;sf g ln1 þWi 2;sf g ln2 þ . . .þWi k;sf g lnk þb1: ð4Þ

The associated coefficients with the hidden layer are
grouped into matrices Wi (weights) and b1 (biases). The
output layer computes the weighted addition of the signals
provided by the hidden layer, and the associated coefficients
are grouped into matrices Wo and b2. Using the matrix
notation, the network output can be given by Eq. 4:

Out ¼ f Wo� g Wi� Inþ b1ð Þ þ b2½ �: ð5Þ

Hidden layer neurons may use any differentiable transfer
function to generate their output. In this work, a hyperbolic
tangent sigmoid transfer function and a linear transfer
function were used for f and g, respectively [8]. From Eq. 4
and considering the transfer functions, the neural network
model is Eq. 6:

Out ¼
X
s

Wo l;sð Þ � 2

1þ e
�2�

P
k

Wi s;kð Þ�Inkþb1 s;lð Þ

� � � 1

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

þ b2 l;1ð Þ:

ð6Þ

The number of network coefficients (weights and biases)
is given by Eq. 7:

m ¼ n lnþ1ð Þ þ Out nþ 1ð Þ: ð7Þ

Learning algorithm

A learning (or training) algorithm is defined as a procedure
that consists of adjusting the coefficients (weights and
biases) of a network to minimize an error function (usually
a quadratic one) between the network outputs for a given
set of inputs and the correct (already known) outputs. If
smooth, nonlinearities are used, the gradient of the error
function can be computed by the classical backpropagation
procedure [9]. In this work, the Levenberg–Marquardt
algorithm optimization procedure in the Matlab Neural
Network Toolbox [9] was used. This algorithm is an
approximation of Newton’s method, which was designed
to approach second-order training speed without having to
compute the Hessian matrix [10]. The root mean square
error (RMSE) is calculated with the theoretical values and
network predictions. This calculation is used as a criterion
for model adequacy shown in Fig. 3.
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Fig. 2 The neural network
computational model

Fig. 3 Recurrent network architecture for the efficiency values and
the procedure used for neural network learning

J Solid State Electrochem (2009) 13:1715–1722 1717



Database preparation

Experimental data provided by Ortega-Toledo [11] were
used. The electrochemical techniques used in this study
included Nyquist plots. Material tested was a carbon steel–
manganese with its main chemical composition as: vanadium
0.001 wt.%, niobium 0.055wt.%, and titanium 0.014 wt.%.
Samples of 0.030×0.010×0.30 m were heated at 1,250 °C at
a heating rate of 0.4 °C/s, soaked for 90 min, and
immediately hot rolled. The rough rolling of the slab was
performed from 1,250 to 1,098 °C in five steps, reaching
42.3% of total deformation and an average strain rate of

2.48 s−1. Then, the rough rolling was followed by a cooling
period until an experimental initial temperature for the final
rolling procedure of 1,051 °C was reached, ending at 867 °C,
achieving a total deformation of 37% in five steps with an
average strain rate of 2.98 s−1. Immediately after the last final
rolling step, the plates were cooled in forced nitrogen gas.
This procedure was performed from 867 to 650 °C and then
the plates were left to cool in air down to room temperature.
Before testing, the electrode was polished using 600 grit SIC
emery paper and then cleansed with alcohol, acetone, and
distilled water. Inhibitor used in this work was a commercial
carboxyamido-imidazoline. The inhibitor was dissolved in
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pure 2-propanol. The concentrations of the inhibitor used in
this work were 5 and 25 ppm and the temperature was kept
at 50 °C. Before applying the inhibitor, a solution containing
3% NaCl was prepared. The testing solution consisted of 3%
NaCl solution, heated, de-aerated with nitrogen gas, CO2-
saturated for 2 h, and then the inhibitor was added.
Continuous stirring and CO2 bubbling during the tests was
used. Electrochemical impedance spectroscopy tests were
carried out at the free corrosion potential, Ecorr, by using a

signal with amplitude of 10 mV and a frequency interval of
0.1–100 KHz applied with a model PC4 300 Gamry
potentiostat. Tests were carried out during 16 h.

Results and discussion

Figures 4 and 5 show the Nyquist plots obtained for the
steel in the chloride solution containing 5 and 25 ppm of
inhibitor. Thus, the obtained experimental database were
split into two parts: learning (75% of database) and testing
(25% of database) to build a good representation of the
diverse situation. With the Nyquist plot obtained for 5 ppm
of inhibitor during 0, 1, 2, 4, 6, 8, and 16 h, immersion data
set were used for training the neural network model. In the
same way, it was proceeded with the Nyquist plots obtained
for 25 ppm of inhibitor used for the learning purpose.
Figure 4 shows the experimental conditions; 588 registered
data constitute the polarization resistance of the corrosion
system with regard to the 5-ppm inhibitor concentration and
650 experimental registered data constitute (Fig. 5) the
Nyquist plot for the 25-ppm inhibitor. We can observe that
the semicircles have the presence of a second semicircle at
low frequencies. Two semicircles indicate the existence of
two processes taking place in the system (corrosion process
and inhibitor process). During the first 8 h, the polarization
or charge transfer resistance (Rct) takes values between 60
and 75 Ω cm2, increasing its value as time elapses. Figure 5
presents the Nyquist diagram for 25 ppm of inhibitor, and

Fig. 6 Neural architecture
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Table 1 Adjusted parameters for the best neural network

Inhibitor concentration, 5 ppm
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J Solid State Electrochem (2009) 13:1715–1722 1719



the evolution of the system can be observed showing what
is known as Warburg or diffusion-controlled impedance,
indicated by a straight line. This slope indicates that the
process was controlled by the diffusion of species through
the inhibitor-formed layer.

The neural network model which was developed (Fig. 6)
involved five and two neurons to determine the imaginary
impedance evolution (in ohms square centimeter) for
different immersion times obtained for a constant inhibitor
concentration. The input layers for these neural network
models were real impedance (in ohms square centimeter)
and time (in hours).

Learning base for the models

One of the problems that occur during neural network
training feedforward is called “overfitting” [8]. To deter-
mine the number of neurons of the hidden layer, the RMSE
(learning and test database) against the number of neurons
was plotted; this comparison is shown in Fig. 7. Therefore,
the error in the learning database decreased as the number
of neurons increased. The optimal number of neurons in the
hidden layer is five for the neural network model of 5 ppm,
whereas for the model of 25 ppm of inhibitor was two.
Table 1 gives the results for the best fits of the number of
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neurons in the hidden layer, as well as the weight values,
biases values for these models.

Validation of the proposed model

Figure 8 presents the simulated imaginary impedance
against experimental imaginary impedance database for all
Nyquist plots for 5 ppm of inhibitor. This figure shows that
the obtained prediction was good and reflected in the
regression coefficient of R=0.984. The residuals in the
testing database were small and their distribution acceptable

and, to confirm this regression coefficient, the test of lack
of fit (LOF) was carried out to assure the dispersion
inherent in the data. As a result of this test, F* was 0.08,
and according to hypothesis for an α value of 0.01, the F
statistic value was 1.3. Consequently, we reject the null
hypothesis in favor of the alternative which is lack of the
linear fit [12]. The model thus developed was able to
predict the imaginary impedance as a function of input
parameters throughout the experimental domain.

Figure 9 shows the simulated imaginary impedance
against experimental imaginary impedance data for all
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Nyquist plots for 25 ppm of inhibitor. This figure shows that
the prediction was also adequate, reflected in the regression
coefficient R=0.996. Similarly, the residuals in the testing
database were small and their distribution well balanced, and
to confirm this regression coefficient the test of LOF was
also carried out to guarantee the dispersion inherent in the
data. As a result of this test, F* is 0.04, and according to
hypothesis for an α value of 0.01, the F statistic value was
1.38. Consequently, we also reject the null hypothesis in
favor of the alternative which is lack of the linear fit [12].
The model thus developed was also able to predict the
imaginary impedance for 25 ppm of inhibitor as a function of
input parameters throughout the experimental domain.

Figure 10 depicts the ability of the model to predict the
impedance value as a function of time for 5 ppm of
inhibitor, whereas Fig. 11 shows the model to predict the
impedance as a function of time for 25 ppm of inhibitor.
These models are important to determine the corrosion
resistance over this experimental condition. It is evident
that the models were successful in predicting the impedance
value as a function of time. This model is not too complex
because the simulation is performed by simple arithmetic
operations and, therefore, it can be used to predict Nyquist
plots over different immersion times and to determine
different impedance behavior with confidence.

Conclusions

This work extends the applications of neural networks in
electrochemical impedance techniques. This study shows a
neural networks modeling, which can be used for good-
quality simulation of imaginary impedance in the Nyquist
plots (R=0.984 for 5 ppm of inhibitor and R=0.996 for
25 ppm of inhibitor). These models were validated with
experimental electrochemical data, predicting Nyquist plots
to determine the corrosion resistance of the tested material

in the solution. This model is not complex because the
simulation is achieved via simple arithmetic operations, and
therefore it can be used for the estimation of the
electrochemical impedance over a wide range of experi-
mental conditions. The interest in this kind of modeling
must be related to the fact that it is developed without any
preliminary assumptions on the underlying corrosion or
chemical mechanisms.
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